Lecture for M.Sc. Semester I/II (Mathematics)

Paper -III (Topology)

TOPIC: SOME THEOREMS ON CONNECTEDNESS

Theorem 1: If every two points of a subset E of a topological space X are contained in some connected subset of E, then E is a connected subset of X.

Theorem 2: A topological space (X, τ) is connected iff every non-empty proper subset of X has a non-empty frontier.

Dr. Premlata Verma

Department of Mathematics

Govt. Bilasa Girls' P.G. College , Bilaspur (C.G.)

Disconnected Space Definition: A topological space (X , τ) is said to be a disconnected space if and only if –

1. X can be expressed as a union of two non empty au - separated sets that is, iff there exists two subsets C and D of X such that

$$X=C \cup D$$
, $C \neq \phi, D \neq \phi$ and $\overline{C} \cap D = \phi \& C \cap \overline{D} = \phi$

- 2. There exists a non-empty proper subset of X which is both au -open and au closed.
- 3. X is the union of two non –empty disjoint au -open sets .

OR

X is the union of two non-empty disjoint au -closed sets.

Theorem required to prove theorem 1: Let (X, τ) be a topological space and let E be a connected subset of X such that $E \subset A \cup B$ where A and B are separated sets. Then $E \subset A$ or $E \subset B$ that is, E cannot intersect both A and B.

THEOREMS

Theorem 1: If every two points of a subset E of a topological space X are contained in some connected subset of E, then E is a connected subset of X.

Proof: Let (X, τ) be a topological space and E be a subset of X such that every two points of E are contained in some connected subset of E.

To prove that: E is connected.

Suppose that E is not connected, that is, E is disconnected. Then there exists two non-empty subsets A and B of X such that $E = A \cup B$

$$\overline{A} \cap B = \phi \& A \cap \overline{B} = \phi$$

Since A and B are non-empty therefore there exists a point a in A and a point b in B. Since a and b are also the elements of E so by assumption there exists a connected subset F of E such that a, b are contained in F. Since $F \subset E \& E = A \cup B$, therefore $F \subset A \cup B$.

Using the theorem "If (X, τ) is a topological space and if E is a connected subset of X such that $E \subset A \cup B$ where A and B are separated sets. Then $E \subset A$ or $E \subset B$ that is, E cannot intersect both A and B."

We have $F \subset A$ or $F \subset B$. Since elements a and b both are in F, it implies that \underline{a}_A b both are either contained in A or contained in B. Suppose a, b be both are contained in A. Since b is also an element of B, from above discussion we have $A \cap B \neq \phi$ Thus we get a contradiction since A and B are disjoint sets.

Hence E must be a connected subset of X.

Hence proved.

SOME DEFINITIONS

Interior points and the interior of a set:

Let (X, τ) be a topological space and let $A \subset X$. Then a point $x \in A$ is said to be an interior point of A iff A is a neighbourhood of x, that is , iff there exists an open set G such that

 $x \in G \subset A$.

Also interior of A is the set of all interior points of A and is denoted by i(A) or Int(A) or A°.

Exterior points and the exterior of a set:

Let (X, τ) be a topological space and let $A \subset X$. Then a point $x \in X$ is said to be an exterior point of A iff it is an interior point of A', that is, iff there exists an open set G such that

 $x \in G \subset A'$.

Also exterior of A is the set of all exterior points of A and is denoted by ext(A) or e(A). Thus ext(A) = Int(A') and Int(A) = ext(A').

Frontier points and the frontier of a set

Let (X, τ) be a topological space and let $A \subset X$. Then a point $x \in X$ is said to be a frontier point (or boundary point) of A iff it is neither an interior point nor an exterior point of A.

Also frontier of A is the set of all frontier points of A and is denoted by Fr (A).

Points to remember:

- 1. $Fr(A) = \overline{A} A^{O}$
- 2. $\overline{A} = A^{\circ} \cup Fr(A)$
- 3. $\overline{A} = A \cup Fr(\overline{A})$
- 4. A topological space (X , τ) is said to be a disconnected space <u>iff</u> there exists a non-empty proper subset of X which is both τ -open and τ closed.

Theorem 2: A topological space (X , τ) is connected iff every non empty proper subset of X has a non-empty frontier.

Proof: Let (X, τ) be connected. We will prove that every non – empty proper subset of X has a non-empty frontier.

Suppose that there exists a subset A of X such that is $A \neq \phi$, $A \neq X$ and $Fr(A) = \phi$.

Therefore $Fr(\overline{A}) = \phi$ (Because $\overline{A} \neq \phi$ & $\overline{A} \neq \chi$)

We know that $\overline{A} = A^{\circ} \cup Fr(A)$ and $\overline{A} = A \cup Fr(\overline{A})$

Because $Fr(A) = \phi \& Fr(\overline{A}) = \phi$, therefore $\overline{A} = A^0 = A$.

 \overline{A} = A implies A is closed.

 $A^{o} = A$ implies A is open.

Thus A is a non-empty proper subset of X which is both open and closed implying that (X, τ) is disconnected. A contradiction to our assumption.

Hence every non-empty proper subset of X has a non-empty frontier.

Conversely, let (X, τ) be a topological space and A be a non-empty proper subset of X (that is $A \neq \emptyset$ and $A \neq X$) such that $Fr(A) \neq \emptyset$. We will prove that (X, τ) is connected.

Suppose that (X , τ) is disconnected. Then there exists a non-empty proper subset G of X which is both open and closed ,that is, $\overline{G} = G$ and $G^0 = G$.

We know that $Fr(G) = \overline{G} - G^{o}$ which implies that $Fr(G) = G - G = \phi$. A contradiction to our assumption.

Hence (X , τ) is connected.

REFERENCES

- 1. J.N. Sharma, Topology, Krishna Prakashan Media (P) Ltd.
- George F.Simmons, Introduction to Topology and Modern Analysis, McGraw HillBook Company, 1963.
- 3. K.D.Joshi, Introduction to General Topology, Wiley Eastern Limited, 1983.
- 4. J.L.Kelley, General Topology, Van Nostrand, Reinhold Company, New York, 1995.
- M.J. Mansfield, Introduction to Topology, D.Van Nostrand Co. Inc. Princeton, N.J., 1963.
- 6. B.Mendelson, Introduction to Topology, Allyn & Bacon, Inc., Boston, 1962.
- 7. K.K. Jha, Advanced General Topology, Nav Bharat Prakashan, Delhi.

THANKYOU

7 of 7 Words: 1 074 W English (India)